Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Maslej, Nestor; Fattorini, Loredana; Perrault, Raymond; Gil, Yolanda; Parli, Vanessa; Kariuki, Njenga; Capstick, Emily; Reuel, Anka; Brynjolfsson, Erik; Etchemendy, John (Ed.)AI has entered the public consciousness through generative AI’s impact on work—enhancing efficiency and automating tasks—but it has also driven innovation in education and personalized learning. Still, while AI promises benefits, it also poses risks—from hallucinating false outputs to reinforcing biases and diminishing critical thinking. With the AI education market expected to grow substantially, ethical concerns about the technology’s misuse—AI tools have already falsely accused marginalized students of cheating—are mounting, highlighting the need for responsible creation and deployment. Addressing these challenges requires both technical literacy and critical engagement with AI’s societal impact. Expanding AI expertise must begin in K–12 and higher education in order to ensure that students are prepared to be responsible users and developers. AI education cannot exist in isolation—it must align with broader computer science (CS) education efforts. This chapter examines the global state of AI and CS education, access disparities, and policies shaping AI’s role in learning. This chapter was a collaboration prepared by the Kapor Foundation, CSTA, PIT-UN and the AI Index. The Kapor Foundation works at the intersection of racial equity and technology to build equitable and inclusive computing education pathways, advance tech policies that mitigate harms and promote equitable opportunity, and deploy capital to support responsible, ethical, and equitable tech solutions. The CSTA is a global membership organization that unites, supports, and empowers educators to enhance the quality, accessibility, and inclusivity of computer science education. The Public Interest Technology University Network (PIT-UN) fosters collaboration between universities and colleges to build the PIT field and nurture a new generation of civic-minded technologists.more » « lessFree, publicly-accessible full text available April 14, 2026
- 
            The recent advances in artificial intelligence (AI) have captivated the attention of many while raising the alarm among activists and policymakers. Although AI has its benefits, it has simultaneously contributed to increased polarization, the proliferation of mis/disinformation, online safety and privacy concerns, exacerbated mental health challenges, and questions about the ethical use of these technologies. The disproportionate influence of AI biases on Black, Latine, and Native communities and the continued exclusion of these communities from computing requires the adoption of new K-12 educational policies to ensure equitable access to AI education and equip students to be responsible and competent creators of technologies.more » « less
- 
            Tree mortality due to global change—including range expansion of invasive pests and pathogens—is a paramount threat to forest ecosystems. Oak forests are among the most prevalent and valuable ecosystems both ecologically and economically in the United States. There is increasing interest in monitoring oak decline and death due to both drought and the oak wilt pathogen (Bretziella fagacearum). We combined anatomical and ecophysiological measurements with spectroscopy at leaf, canopy, and airborne levels to enable differentiation of oak wilt and drought, and detection prior to visible symptom appearance. We performed an outdoor potted experiment withQuercus rubrasaplings subjected to drought stress and/or artificially inoculated with the pathogen. Models developed from spectral reflectance accurately predicted ecophysiological indicators of oak wilt and drought decline in both potted and field experiments with naturally grown saplings. Both oak wilt and drought resulted in blocked water transport through xylem conduits. However, oak wilt impaired conduits in localized regions of the xylem due to formation of tyloses instead of emboli. The localized tylose formation resulted in more variable canopy photosynthesis and water content in diseased trees than drought-stressed ones. Reflectance signatures of plant photosynthesis, water content, and cellular damage detected oak wilt and drought 12 d before visual symptoms appeared. Our results show that leaf spectral reflectance models predict ecophysiological processes relevant to detection and differentiation of disease and drought. Coupling spectral models that detect physiological change with spatial information enhances capacity to differentiate plant stress types such as oak wilt and drought.more » « less
- 
            Bosco, Giovanni (Ed.)Transposable elements (TE) are selfish genetic elements that can cause harmful mutations. In Drosophila , it has been estimated that half of all spontaneous visible marker phenotypes are mutations caused by TE insertions. Several factors likely limit the accumulation of exponentially amplifying TEs within genomes. First, synergistic interactions between TEs that amplify their harm with increasing copy number are proposed to limit TE copy number. However, the nature of this synergy is poorly understood. Second, because of the harm posed by TEs, eukaryotes have evolved systems of small RNA-based genome defense to limit transposition. However, as in all immune systems, there is a cost of autoimmunity and small RNA-based systems that silence TEs can inadvertently silence genes flanking TE insertions. In a screen for essential meiotic genes in Drosophila melanogaster , a truncated Doc retrotransposon within a neighboring gene was found to trigger the germline silencing of ald , the Drosophila Mps1 homolog, a gene essential for proper chromosome segregation in meiosis. A subsequent screen for suppressors of this silencing identified a new insertion of a Hobo DNA transposon in the same neighboring gene. Here we describe how the original Doc insertion triggers flanking piRNA biogenesis and local gene silencing. We show that this local gene silencing occurs in cis and is dependent on deadlock , a component of the Rhino-Deadlock-Cutoff (RDC) complex, to trigger dual-strand piRNA biogenesis at TE insertions. We further show how the additional Hobo insertion leads to de-silencing by reducing flanking piRNA biogenesis triggered by the original Doc insertion. These results support a model of TE-mediated gene silencing by piRNA biogenesis in cis that depends on local determinants of transcription. This may explain complex patterns of off-target gene silencing triggered by TEs within populations and in the laboratory. It also provides a mechanism of sign epistasis among TE insertions, illuminates the complex nature of their interactions and supports a model in which off-target gene silencing shapes the evolution of the RDC complex.more » « less
- 
            Efforts to broaden participation in computing address how systemic school structures, educator preparation, and curriculum can provide inclusive learning spaces for all students. The emerging multiplicity of scholarship in computer science (CS) education forwards diverse voices, perspectives, and positionalities, and together, provide a rich set of evidence-based narratives that can transform K-12 policies and practices. The four projects featured in this panel bring together CS education efforts with varying methodologies focused on equity-oriented pedagogies and learning for all youth across the US. This panel will focus not only on sharing the multi-pronged efforts of the featured projects, but also on developing a shared vision among participants and panelists for what equity" can and should be in the future of both SIGCSE and CS education as we celebrate SIGCSE's 50th anniversary. By highlighting the work of projects rather than individuals in this panel, audience members will have the opportunity to learn about how collaborative efforts create and examine contexts for equity in CS education across diverse stakeholders, while also providing a richer base for constructing visions of equity that go beyond mere platitudes, toward action items for broadening participation in computing.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
